NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI

CLASS 10 (Physics) DPP (Academy)

1. Five joule of work is done in moving 12.5×10^{18} electron from one end to other end of conductor. What is the potential difference between the two end of conductor?
2. Electric potential at a point in an electric field is 0.5 V when charge of 3C was brought from infinity to that point. Calculate the work done.
3. The resistance of 1 m of nichrome wire is 6Ω calculate its resistance if its resistance if its length is 70 cm .
4. Calculate (a) the equivalent resistance,(b) the electric current, and (c) the potential difference across each resistor in the circuit shown in figure

(a)

(b)
5. Determine the equivalent resistance between points A and B in the following circuits.

6. Given n resistors each of resistance R, how will you combine them to get the (i) maximum (ii) minimum effective resistance? What is the ratio of the maximum to minimum resistance?
7. Determine the value of current in the 2Ω resistance and the potential difference between A and B in the circuit diagram given

8. Find the equivalent resistance between the points A and D of the adjoining circuit diagram.

9. Two resistors of resistance 10Ω and 20Ω are connected in parallel.A battery supplies 6 A of current to the combination, as shown in figure. Calculate the current in each resistor

10. A piece of wire of resistance R is cut into five equal parts.these part are then connected in parallel. If the equivalent resistance of this combination is R^{\prime}, then the ratio $\mathrm{R} / \mathrm{R}^{\prime}$ is:
11. Which of the following terms does not reperesent electrical power in a circuit?
a) $I^{2} R$
b) $I R^{2}$
c) VI
d) V^{2} / R
12. Two conducting wires of the same material and equal lengths and equal diameters are first connected in series and then in parallel in electric circuit. The ratio of the heat producet in series and parallel combinations would be:
13. A copper wire hasa diameter of 0.5 mm and a resistivity of 1.6×10^{-6} ohm cm. How much of this wire would be required to make a 10 ohm coil? How much does the resistance change if the daimeter is doubled?
14. Whem a 12 V battery is connected across an unknown resistor there is a current of 2.5 mA in the circuit find the value of the resistance of the resistor.
15. A battery of 9 V is connected in series with resistors of $0.2,0.3,0.4,0.5$ and 12 . How much current would flow through the 12 resistor?
16. How many 176Ω resistors (in parallel) are required to carry 5 A in 220 V line?
17. Show how you would connect three resistors, each of resistance 6Ω, so that the combination has a resistance of (i) 9Ω (ii) 2Ω
18. Several electric bulbs designed to be used on a 220 V electric supply line, are rated 10 w . How many lamps can be connected in parallel with each other across the two wires of 220 V line if the maximum allowable current is 5 A ?
19. A hot plate of an electric over connected to a 220 V line has two resistance coils A and B each 24Ω resistance, which may be used separately, in series, or series or in parallel. What are the currents in the three cases?
20. Two lamps one rated 100 W at 220 V , and the the other 60 W at 220 V , are connected in parallel to electric mains supply. What current is drawn from the line if the supply voltage is 220 V ?

NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI

CLASS 9 (Physics) DPP (Academy)

1. Find the linear momentum of a cricket ball of mass 250 g moving with a velocity of $72 \mathrm{kmh}^{-1}$
2. A force of 1 N acts on a body of mass 1 g . Calculate the acceleration produced in the body?
3. Calculate the force acting on a body which changes the momentum of body at the rate of $1 \mathrm{~kg} \mathrm{~ms}^{-2}$.
4. A mass of 5 kg is acted upon by a force of 1 N . Starting from rest, how much is distance covered by the mass in 10 s ?
5. A car of mass 1000 kg is moving with a speed of $36 \mathrm{kmh}^{-1}$ on a level road. Calculate the retarding force required to stop the car in a distance of 50 m .
6. A truck starts from rest and rolls down a hill with a constant acceleration. It travels a distance of 400 m in 20s. Find its acceleration. Find the force acting on it if its mass is 7 metric tonnes (Hint: 1 metric tonne $=1000 \mathrm{~kg}$)
7. A stone of 1 kg is thrown with a velocity of $20 \mathrm{~ms}^{-1}$ across the frozen surface of a lake and comes to rest after travelling a distance of 50 m . What is the force of friction between the stone and the ice?
8. A 8000 kg engine pulls a train of 5 wagons, each of 2000 kg along a horizontal track. If the engine exerts a force of 40000 N and the track offers a friction force of 5000 N , then calculate:
a) The net accelerating force
b) The acceleration of the train and
c) The force of wagon 1 on wagon 2
9. An automobile vehicle has a mass of 1500 kg . What must be the force between the vehicle and the road if the vehicle is to be stopped with a negative acceleration of $1.7 \mathrm{~ms}^{-2}$
10. Define the term balanced force.
11. Name the physical quantity on which inertia depends.
12. Define one Newton of force.
13. State newton's third law of motion.
14. What force would be needed to produce an acceleration of ms^{-2} on a ball of mass 6 kg ?
15. Define force
16. State newton's second law of motion.
17. A moving car engine is turned off and it slowly comes to rest. Is the force acting on it balanced or unbalanced? Name the force.
18. State and explain the law of inertia(or Newton's first law of motion)
19. Define inertia. Name the physical quantity that measures it.
20. What is the momentum of an object of mass m , moving with velocity v ?
